Groth16 - SNARK Fundamentals

PSE ZK Workshop

Flying Nobita

Sat, Feb 15, 2025

Agenda

1. Groth16 Overview
2. Hands-on with circom on zkREPL

Feel free to ask questions at anytime.

What’s Special About Groth16?

- One of the most widely used proof system

- Smallest proof size (128 to 192 bytes)

- Fastest verification time (~1 ms)

- Used in ZCash, one of the earliest cryptocurrency projects that use ZK

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Problem / NP Relations

e Groth16 is a zero-knowledge proof (ZKP) system for the satisfiability of
any NP Relations
o i.e. given a public statement x, it proves knowledge of a secret w such that R(x; w) = 1}

e e.g. Sudoku(puzzle, solution) =1

o aZKP convinces the Verifier that the Prover knows a solution (secret, i.e. only prover
has this) to a puzzle such that Sudoku(puzzle, sol) = 1

Arithmetic Circuit

e directed acyclic graph (DAG) ChaRRRIE o

e C:F"—> F

e a function that takes n elements in a Field and
output an element in the Field

e |C| =size of the circuit = the number of gates

e any problem in NP can be modeled with an
arithmetic circuit

e example:
o whatis x?
m X=3
o given witness: {x=3}, circuit C is satisfied
e we will look and write more circuits in a bit

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Arithmetic Circuit -> R1CS: Step 1: Flattening

e transform the circuit equation to a set of equations sym; =z *zx

that has at most 1 multiplication Y= Sym, *
e each equation has 2 input and 1 output symyo =y -+
e this set of equations is equivalent to our original out = symq + 5

circuit equation if ‘out = 35

e thus proving these 4 equations is the same as proving the original circuit
equation

o Output: [one, z, out, sym,, y, syms)

3% 3 — 9

Tk T — Symq

Source: R1CS1 by O0xPARC

https://www.youtube.com/watch?time_continue=61&v=UnKebbiaimg&themeRefresh=1

(274+3)x1—-30=0
Y+ x — symo =0

Source: R1CS3 by 0xPARC

https://www.youtube.com/watch?v=9PbO8RRFgKw&t=66s

R1CS

R(z;w) =1 <= U(s) o V(s) — W(s) = 0 where: U, V, W are of size (m + 1) rows and (n + 1) columns
s, the witness, is a column vector of size (n + 1)
o is the Hadamard product (element-wise multiplication)

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Prerequisites: FFT / Lagrange Interpolation

Polynomial Representation
Coefficient Representation
* A(z) = a0+ alz + a2z +... + a,z"
Evaluation Representation / Point-Value Representation
* represented as a set of n pairs (20, y0), (z1,41),...,(z,,y,) such that:

* z; # z;,V1# j(i.e. the points are unique)
* yr = A(zy),Vkwherek =0...n—1

FFT / Lagrange Interpolation Applications

Applications

= some operations (e.g. polynomial multiplication and division) compute more efficiently in evaluation
representation

« useful for FRI-based systems (e.g. STARKS)

T Gy Ordinary multiplication ___[* } Coefficient
bo.by... .. b,y Time ©(n?) " representations
Evaluation Interpolation
Time G(nlgn) Time O(nlgn)
Y
Alw3,), B(03,) Clwd,)
Alwy,). Bloy,) Pointwise multiplication Clwy,) Point-value
; Time ©(n) i g representations
Al ™). Bwi™) Clwin™

Source: + Introduction to Algorithms by CLSR%

Lagrange Interpolation

- evaluation -> coefficient of
a given polynomial

h(x) l2(x) la(x) la(x) ===== L(x)

Fast Fourier Transform (FFT)

- coefficient -> evaluation of a given polynomial:

- Using divide and conquer to achieve O(n log(n)) instead of O(nA2):
a. split the polynomial into 2 parts, odd and even coefficients
b. evaluate each of the part
c. combine the 2 parts

iFFT

- evaluation -> coefficient of a given polynomial
- find the inverse of the NTT matrix

- use the inverse matrix to find the coefficients

FFT vs Lagrange Interpolation

e Lagrange Interpolation is slower than FFT, but can take any arbitrary
point-values, and any arbitrary field

e FFT requires:
o afinite field

o domain must be a multiplicative subgroup of the field (i.e. elements are from a generator
G to a range of powers)

o multiplicative subgroup is size 22n, which let us create a recursive algorithm that
calculates the results with much less work

Prerequisite: Pairing / Bilinear Map

- Pairing is the function e: G xG; » Gr

. . | Pairing Rul
over 3 groups with their respective © ~2""9 Rules

generators 1. e(nP,mQ) = e(P,mQ)" = e(nP, Q)™ = e(P,Q)"™
- Pairing allows us to multiply 2 2. e(P, Q) x (P, Q)S = e(P, Q)R+
“hidden numbers” 3.e(P,Q)0 =1

4.e(P,Q+ R) = e(P,Q) * e(P,Q)
5.¢(P+85,Q) = e(P,Q) *¢(S,Q)

Prerequisite: Pairing / Bilinear Map - Example

Question

Let's suppose Alice want to prove to Bob that she know some integer a that satisfies the equation: a? — 2027a + 16152 = 0
without revealing a to Bob. How would Alice do this using an elliptic curve pairing?

Answer:

1. Alice choose 2 public generators G, and H and share to Bob.
2. Alice Compute aG and aH and send results to Bob (Bob cannot compute a due to ECDLP)
3. Bob computes:

e(aG,aH) * e(G, (—2027) * (aH)) * e(G, 16152 x H) = e(G, H)*'~2027a+16152

If above result == 1, then Bob know a? — 2027a + 16152 = 0 with high probability.

QAP

R1CS can be converted to QAP

Instead of using dot products, it uses polynomials with Lagrange interpolation

Rather than checking the constraints in R1CS individually, one can check all of the constraints at the

same time by doing the dot product check on the polynomial

to check correctness, we divide U(s) o V(s) — W(s) by (X™ — 1) and ensure there is no remainder
e Groth16 is a ZKP for the QAP satisfiability relation:

Yo ui(X)aj- 3o vi(X)a; + 320 wi(X)a;

(X" —1) =g

where:
* h(X) is the quotient polynomial
* X" —1=[]",(X — ') where (w,w?,...,w") denote the nth roots of unity

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Groth16 Protocol

A Atastime
NOLation

commitment to a that results in a point in G; := [a];
=a-G €
= aG,
i=G1+G1+...+ Gy, wherea € F =27,

. <N
a times

i" Lagrange polynomial := £;(X)

JG[O,‘R),J#‘!

Groth16 - Trusted Setup

1. Sample Random Field Elements

We need 5 random field elements to generate the Proving key and the Verification Key:
1.8

2.
3.8

4.~
5.0

Groth16 - Trusted Setup

2. Compute Proving Key

((a1, [B]1, [B]2, [8]1, [4]2 \
Com(rand‘orm scalars)

(i ()] [03(1)]) jejo m)» ([05()]2) jefo,m]
Com(u_.,v)‘,rCom(vj)

Li(t})(t" -1
proving key < ([(r)(;-)]1)
iG[O,n—2J]

N

Com(sts for h(r)t(r))
([,Buj(*r) + aw;(1) + w;(7)]1)
] jelt+1,m]

\ Com(priv;;e witness) /

[public wires + (m — l) private wires = Total m wires

Groth16 - Trusted Setup

3. Compute Verification Key

[j“]l, [ﬂ]zlr[’)’]z, [5]2;

Com(random scalars)

verification key Buj(r)+avy(r)+wy(r) | |
([v] 1)J €[0,¢]

N

public witness

» contains information about the public portion of the witness

Groth16 - Trusted Setup

4. Discard Random Field Elements

» The 5 random field elements are not needed anymore and must be discarded to protect the integrity of the ZKP
and prevent malicious actors from creating false proof that will be verified correctly
* As such, the random field elements are called "toxic waste.”

Groth16 - Prove

Al ey + ol + 3 asfus(m)la
i=0

(Bl (B2 + sldlz + 3 aslos(n)]e
i=0

[C]1<— in: aj[ﬁuj(T)'*'aUg(T)'*'wj(T)] Zh(a)[ﬁ(’r)('r)] +8[A]1+1’[B]1—7‘8[6]1
j=£+1
where h(X) = "2—:2 h(w')L;(7) is the quotient polynomial
i=0

proof 7 < ([A]1, [B]2,[C]1) € G1 X G2 x G,

Groth16 - Verify

T L U;\T Qu;\T Wi;\T
e({Al1, [Blz) = el [812) + (Zaj[ﬂ A7) Lenin) L 9lD) ,mz) +e((Cln, 8]

i

Jj=0

Break

Circom - Architecture

CIRCOM & SNARKJS

Design your arithmetic circuit and write High-level Circuit Low-level
circuit —p BELOVIEE —» circuit

your circuit using circom Use your own code s . e
description (circom) description
Use our safe templates

Compile the circuit to get a low-level representation (R1CS)

Crypto
Compiler
(snarkjs)

(Trusted Setup)

$ circom circuit.circom --rics --wasm —-sym

Use snarkjs to compute your witness

Proving Validation
$ snarkjs calculatewitness —-wasm circuit.wasm
key key

——input input.json —--witness witness. json

Crypto Crypto
Generate a trusted setup and get your zk-SNARK proof inputs el Compiler Compiler

ublic, . .
$ snarkjs setup P) (snarkjs) (snarkjs)
$ snarkjs proof ¢ ¢

ZK-SNARK Verifier code
Proof nt (Solidity)

$ snarkjs validate \ ?
$ snarkjs generateverifier = 1 1 1 1

Validate your proof or have a smart-contract validate it!

Circom - Architecture (Detailed)

turn the verifier into
a smart contract

mnrkj: zkey export o n o
solidityverifier __A)
B e
(pot.ptau \
= snarkjs zkey now e SR ol zkey/ — snarkjs 7key export s ka o >\
generate the T
clecultrics / proving key -(:lx)n!::::s) oxpor (i
/ B Lo verification key
e e E
compile the circuit N /\ c.@ y <f’°°@
\ ——
snarkjs wins calculate | ——3> wnness.wms) — == snarkjs groth16 prove

. / calculate the witness \
input.json
oty)

create the proof

ST S —
[deploy contract] [—— Gn—cham oon(r-ap

A

V
'
'
'
'
'

N
 feal \cnf) Proof]

these two arc
cquivalent

\ snarkjs groth16 verify

snarkjs zkey export i e =
soliditycalldata = <°"" an”"'e@
sl

generate the arguments
to verify the proof
with the smart contract

Hands-on: zkREPL

https://zkrepl.dev
run; shift + enter

save to Github Gist: Ctrl + s
circuit inputs: comments with /* */
signal values derived from inputs: tooltips

https://zkrepl.dev

Circom Language

Variables
o Mutable
o 2 basic variable types:
m field elements where is a large prime
m arrays that hold many field elements
Signals:
o Immutable
o 3types of signals:
m input
m output
m intermediate
Constraint generation: ===
Assigning a value to a signal: <--
Constraint generation + assigning a value to a signal: <==
Reference: Signals - Circom 2 Documentation

https://docs.circom.io/circom-language/signals/

Circom: Circuit vs Program

e circuit has no memory
e circuit has no loop

Circom Example: isZero()

if ‘in == 0:°

-inv = @' template IsZero() {
signal input in;
signal output out;

-Yin % inv = 0

if "in != 0: signal inv;

inv <=-= in!=0 ? 1/in : 0;

- 1/in is a non-quadratic constraint, "
out <== 1 - inxinv;

canonly use ‘<--" and not "<=="

- inv’ is unconstrained, can be any value inkout === 0;
-Yin % inv = 1° s
- out =0

Circom Example: isZero() Problem

e itis not possible to constrain ‘inv’
directly

e as inv is not constrained so one can Valid?
force ‘inv be 0, but this would break the
‘isZero()” function!

es

<

no
yes

yes

in

S & X x

inv
1/x
0 (?)

out

1 - in % inv
0

1 (wrong)

1

1

Circom Example: isZero() Problem

* the constraint in * out === @ prevent this from happening
out Constraint (must == 0)
Valid? in inv in % inv 1 - in % inv in * out
yes X 1/x 3 § 0 0
no X 0 0 1 X
yes)) () 1
yes 0 y 0 1]

Circom: Exercises

Try to do the exercises (don't peak at the solution!)

e ZKRepl Questions
e ZKRepl Solutions

Other Ideas:

e range check

https://gist.github.com/flyingnobita/b57d8691ec2e4b7b56941737526af097
https://gist.github.com/flyingnobita/54e665447e534f33957535665447d1c2

Resources & Reference

e On the Size of Pairing-Based Non-interactive Arguments, by Jens Groth,
2016

zk-SNARKSs: A Gentle Introduction - Anca Nitulescu
Groth16 - Alin Tomescu

An overview of the Groth16 proof system

The Hidden Little Secret in Snark|S - Kobi Gurkan

Groth16 Explained - RareSkills

https://eprint.iacr.org/2016/260.pdf
https://eprint.iacr.org/2016/260.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://alinush.github.io/groth16
https://blog.lambdaclass.com/groth16/
https://geometry.xyz/notebook/the-hidden-little-secret-in-snarkjs
https://www.rareskills.io/post/groth16#:~:text=The%20prover%20can%20create%20an,the%20proof%20to%20achieve%20that.

Thank you!

i

1 min Anonymous Feedback Form

Appendix - Computational vs Statistical

PCS + PIOP = SNARK

NARK (KISNARK 2kPok
(ZK)STARK
K npw{edge
Soundness
Prover Knows Witness
G extractable) Argument of l(nowledge Proof of Know!eplge,
URK) POK)
<
&
(2K)SNARG, kP
Argume)\t
UR&) Prock
(Computational) Soundness
Witness Exists
¢
Comeltba\tiona\l Statistical / Information Theoretical / Perfect
Assumption: Prover Limited Compute Assumption: Prover Unlimited Compute
i.e. Prover with uilimited compute can Falsified proof i.e. Prover with uilimited compute camot Falsified proof
Source: Nicolas Mohnblatt

