
Sum-Check

Flying Nobita | ProgCryptoSG

May 29, 2025

Contents
Overview

Protocol

Security

Applications

Take Aways

Sum-check Overview
Algebraic Methods for Interactive Proof Systems (1992)

Authors: Carsten Lund, Lance Fortnow, Howard Karloff, Noam Nisan

one of the most important interactive proof in the ZK literature

allows the prover to convice the verifier that a multivariate polynomial sum over the Boolean Hypercube with

a claimed sum . i.e.:

Where:

 is the claimed sum

 is the true sum

 is a -variate polynomial defined over a finite field

C1

C 1 =? H := g(b , … , b)
b …b ∈{0,1}1 v

∑ 1 v

C 1

H

g v F

https://dl.acm.org/doi/pdf/10.1145/146585.146605

Multivariate Polynomial

 maximum degree of all terms

e.g. because of

Multilinear (Special Case)

A multivariate polynomial that is linear in each of its variables separately

e.g.

A multivariate polynomial that is non-linear in each of the variables

P (x1,x2,x3) = x x +1 2
2 3x x +1 2 4x 2

5

TotalDeg(P) =
5 4x 2

5

P (x, y, z) = 3 + 4x + 5y + 5xy + z

Boolean Hypercube
The set of points

e.g. for , it would be:

{0, 1}n

n = 3

(0, 0, 0),

(0, 0, 1),

(0, 1, 0),

(0, 1, 1),

(1, 0, 0),

(1, 0, 1),

(1, 1, 0),
(1, 1, 1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

Protocol
Round 0
Prover calculates and send the claimed sum to the
verifier.

Prover:

send value

claimed

C 1

C =1 H

EXAMPLE R0

C H1 =? := g(x ,x ,x)
x ,x ,x ∈{0,1}1 2 3

∑ 1 2 3

Let g(X ,X ,X)1 2 3

H

H

H

= 2X + X X + X X 1
3

1 3 2 3

= g(0, 0, 0) + ... + g(1, 1, 1)

= 1 + 2 + 3 + 2 + 4

= 12

Honest prover send:

C = 121

Protocol - R1 - Prover

1. Prover:

sends , which is a univariate polynomial

claims , where:

 is also defined as

i.e. is the summation of over Boolean

Hypercube for all variables except which is

equal to

The prover computes over the Boolean Hypercube

except leaving the 1st variable open. Then let the

Verifier evaluate .

g

X 1

g (X)1 1

g (X)1 1

g (X) =1 1 s (X)1 1

s (X) :=1 1 g(X ,x , … ,x)
(x ,…,x)∈{0,1}2 v

v−1

∑ 1 2 v

s (X)1 1 H = s (0) +1 s (1)1

s (X)1 1 g

x 1

X 1

EXAMPLE R1 - PROVER

Prover claims:

g (X)1 1

s (X)1 1

= s (X)1 1

= g(X , 0, 0) + g(X , 0, 1)1 1

+ g(X , 1, 0) + g(X , 1, 1)1 1

= 8X + 2X + 11
3

1

Protocol - R1 - Verifier

Verifier:

checks:

1.

If true, then while Prover verified is tied to ,

Verifier still need to check

Verifier pick random and check

 is explicit

is easy to compute

 is summed over the hypercube

is hard to compute

but Verifier can use sum-check to check

Prover already sent .

Verifier compute and check:

Verifier pick and send to Prover.

Verifier checks Prover s̓ claim and send to Proverr 1

C 1 =? H = g (0) +1 g (1)1

C 1 g 1

g (X) =1 1 s (X)1 1

r 1 g (r) =1 1 s (r)1 1

g (r)1 1

s (r)1 1

s (r)1 1

EXAMPLE R1 - VERIFIER

C =1 12

s (X)1 1 = 8X + 2X + 11
3

1

= s (0) + s (1)1 1

= 12

= C 1

r =1 2

Protocol - R2 to - 1

Prover:

sends

claims

where

Verifier:

checks:

sends a random element

Honest prover prepare and send:

Verifier checks:

Verifier pick and send to Prover.

v
The Prover replaces from the previous round with

random numbers given by the Verifier. The Prover
leaves the current open and computes with the

rest of . The Verifier evaluates the current .

X

X g

X X

g (X)j j

g (X) =j j s (X)j j

s (X) :=j j

 g(r , … , r ,X ,x , … ,x)
(x ,...,x)∈{0,1}j+1 v

v−j

∑ 1 j−1 j j+1 v

s (r)j−1 j−1 =? g (0) +j g (1)j

r ∈j F

EXAMPLE - R2

g (x)2 2 = g(2,X , 0) + g(2,X , 1)2 2

= 34 + X 2

s (r)1 1

s (X)1 1

s (2)1

g (0) + g (1)2 2

g (0) + g (1), where r = 2=? 2 2 1

= 8X + 2X + 11
3

1

= 69

= 34 + 35 = 69

r =2 3

Protocol - Last Round
Prover:

send

claim

where

Verifier:

checks:

select a random element

checks via any of:

oracle access to

compute on its own

ask Prover whom can prove the claim via

running further sum-checks

Honest Prover prepare and send:

Verifier checks:

Verifier pick and check:

g (X)v v

g (X) =v v s (X)v v

s (X) :=v v g(r , … , r ,X)1 v−1 v

g (r)v−1 v−1 =? g (0) +v g (1)v

r ∈v F
g (r)v v =? g(r , … , r)1 v

g

g(r , … , r)1 v

EXAMPLE - R3

g (X)3 3 = g(2, 3,X)3

= 16 + 5X 3

s (r)2 2

s (X)2 2

s (3)2

g (0) + g (1)3 3

g (0) + g (1), where r = 3=? 3 3 2

= 34 + X 2

= 37

= 16 + 21 = 37

r =3 6

s (6)3

s (6)3

g(2, 3, 6)

g(2, 3, 6)=?

= 16 + 30 = 46

= 16 + 12 + 18 = 46 (e.g. via orcale)

Security

If the Prover is honest, then the Verifier will always accept when following the protocol.

Proof is based on the Schwartz-Zippel lemma.
i.e. 2 different polynomials almost never match at randomly chosen points

COMPLETENESS ERROR

δ =c 0

SOUNDNESS ERROR

δ ≤S

∣F∣
v deg(g)

Applications

GKR08

Spartan20

Brakedown21

Orion22

HyperPlonk23

Locq24

INTERACT IVE PROOF

SNARKS

LOOKUPS

Take Aways

number of evaluations:

time to compute each evaluation:

total time to compute without sum-check:

total time to compute with sum-check: ~

Proverʼs perspective: allows the Prover to prove to the Verifier that the sum is correct

Verifierʼs perspective: allows the Verifier to reduce its computation when calculating the sum by trustlessly
delegating the computation to a Prover

a fundamental building block for some of the fastest prover amongst interactive proof system

 g(b , … , b)
b …b ∈{0,1}1 v

∑ 1 v

2v

T

2 ⋅v T

T

Learn More

Proofs, Argument & Zero Knowledge by Justin

Thaler

GKR and Sumcheck Protocol - Yupeng Zhang

Sum-Check Protocol - FlyingNobta.com

REFERENCES

OTHER RESOURCE

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://www.youtube.com/watch?v=lMo-MmJ7e_E
https://flyingnobita.com/Notes/ZK/Sum-Check-Protocol

1 min Anonymous Feedback

Thank you!
@FlyingNobita

https://x.com/FlyingNobita

