
Groth16 - SNARK Fundamentals
PSE ZK Workshop

Sat, Feb 15, 2025

Flying Nobita

Agenda
1. Groth16 Overview
2. Hands-on with circom on zkREPL

Feel free to ask questions at anytime.

What’s Special About Groth16?
- One of the most widely used proof system
- Smallest proof size (128 to 192 bytes)
- Fastest verification time (~1 ms)
- Used in ZCash, one of the earliest cryptocurrency projects that use ZK

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Problem / NP Relations
● Groth16 is a zero-knowledge proof (ZKP) system for the satisfiability of

any NP Relations
○ i.e. given a public statement x, it proves knowledge of a secret w such that R(x; w) = 1}

● e.g. Sudoku(puzzle, solution) = 1
○ a ZKP convinces the Verifier that the Prover knows a solution (secret, i.e. only prover

has this) to a puzzle such that Sudoku(puzzle, sol) = 1

Arithmetic Circuit
● directed acyclic graph (DAG)
●
● a function that takes n elements in a Field and

output an element in the Field
● |C| = size of the circuit = the number of gates in C
● any problem in NP can be modeled with an

arithmetic circuit
● example:

○ what is x?
■ x = 3

○ given witness: {x=3}, circuit C is satisfied
● we will look and write more circuits in a bit

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Arithmetic Circuit -> R1CS: Step 1: Flattening
● transform the circuit equation to a set of equations

that has at most 1 multiplication
● each equation has 2 input and 1 output
● this set of equations is equivalent to our original

circuit equation if `out = 35`
● thus proving these 4 equations is the same as proving the original circuit

equation
● Output:

Example: Gate 1

Source: R1CS1 by 0xPARC

https://www.youtube.com/watch?time_continue=61&v=UnKebbiaimg&themeRefresh=1

Example: Gate 3

Source: R1CS3 by 0xPARC

https://www.youtube.com/watch?v=9PbO8RRFgKw&t=66s

R1CS

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Prerequisites: FFT / Lagrange Interpolation

FFT / Lagrange Interpolation Applications

 Lagrange Interpolation

- evaluation -> coefficient of
a given polynomial

Fast Fourier Transform (FFT)
- coefficient -> evaluation of a given polynomial:
- Using divide and conquer to achieve O(n log(n)) instead of O(n^2):

a. split the polynomial into 2 parts, odd and even coefficients
b. evaluate each of the part
c. combine the 2 parts

iFFT
- evaluation -> coefficient of a given polynomial

 - find the inverse of the NTT matrix

 - use the inverse matrix to find the coefficients

FFT vs Lagrange Interpolation
● Lagrange Interpolation is slower than FFT, but can take any arbitrary

point-values, and any arbitrary field
● FFT requires:

○ a finite field
○ domain must be a multiplicative subgroup of the field (i.e. elements are from a generator

G to a range of powers)
○ multiplicative subgroup is size 2^n, which let us create a recursive algorithm that

calculates the results with much less work

Prerequisite: Pairing / Bilinear Map
- Pairing is the function

over 3 groups with their respective
generators

- Pairing allows us to multiply 2
“hidden numbers”

Prerequisite: Pairing / Bilinear Map - Example

QAP
● R1CS can be converted to QAP
● Instead of using dot products, it uses polynomials with Lagrange interpolation
● Rather than checking the constraints in R1CS individually, one can check all of the constraints at the

same time by doing the dot product check on the polynomial
● to check correctness, we divide and ensure there is no remainder
● Groth16 is a ZKP for the QAP satisfiability relation:

Groth16 Workflow

Problem -> Arithmetic Circuit -> R1CS -> QAP -> Groth16

Groth16 Protocol

Groth16 - Trusted Setup

Groth16 - Trusted Setup

Groth16 - Trusted Setup

Groth16 - Trusted Setup

Groth16 - Prove

Groth16 - Verify

Break

Circom - Architecture

Circom - Architecture (Detailed)

Hands-on: zkREPL
● https://zkrepl.dev
● run: shift + enter
● save to Github Gist: Ctrl + s
● circuit inputs: comments with /* */
● signal values derived from inputs: tooltips

https://zkrepl.dev

Circom Language
● Variables

○ Mutable
○ 2 basic variable types:

■ field elements where is a large prime
■ arrays that hold many field elements

● Signals:
○ Immutable
○ 3 types of signals:

■ input
■ output
■ intermediate

● Constraint generation: ===
● Assigning a value to a signal: <--
● Constraint generation + assigning a value to a signal: <==
● Reference: Signals - Circom 2 Documentation

https://docs.circom.io/circom-language/signals/

Circom: Circuit vs Program
● circuit has no memory
● circuit has no loop

Circom Example: isZero()

Circom Example: isZero() Problem
● it is not possible to constrain `inv`

directly
● as `inv` is not constrained so one can

force `inv` be 0, but this would break the
`isZero()` function!

Circom Example: isZero() Problem

Circom: Exercises
Try to do the exercises (don’t peak at the solution!)

● ZKRepl Questions
● ZKRepl Solutions

Other Ideas:

● range check

https://gist.github.com/flyingnobita/b57d8691ec2e4b7b56941737526af097
https://gist.github.com/flyingnobita/54e665447e534f33957535665447d1c2

Resources & Reference
● On the Size of Pairing-Based Non-interactive Arguments, by Jens Groth,

2016
● zk-SNARKs: A Gentle Introduction - Anca Nitulescu
● Groth16 - Alin Tomescu
● An overview of the Groth16 proof system
● The Hidden Little Secret in SnarkJS - Kobi Gurkan
● Groth16 Explained - RareSkills

https://eprint.iacr.org/2016/260.pdf
https://eprint.iacr.org/2016/260.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://alinush.github.io/groth16
https://blog.lambdaclass.com/groth16/
https://geometry.xyz/notebook/the-hidden-little-secret-in-snarkjs
https://www.rareskills.io/post/groth16#:~:text=The%20prover%20can%20create%20an,the%20proof%20to%20achieve%20that.

Thank you!

1 min Anonymous Feedback Form

Appendix - Computational vs Statistical

Source: Nicolas Mohnblatt

